532 research outputs found

    APF-50: A Robotic Search for Earth's Nearest Neighbors.

    Get PDF
    Ph.D. Thesis. University of Hawaiʻi at Mānoa 2017

    RadVel: The Radial Velocity Modeling Toolkit

    Get PDF
    RadVel is an open source Python package for modeling Keplerian orbits in radial velocity (RV) time series. RadVel provides a convenient framework to fit RVs using maximum a posteriori optimization and to compute robust confidence intervals by sampling the posterior probability density via Markov Chain Monte Carlo (MCMC). RadVel allows users to float or fix parameters, impose priors, and perform Bayesian model comparison. We have implemented realtime MCMC convergence tests to ensure adequate sampling of the posterior. RadVel can output a number of publication-quality plots and tables. Users may interface with RadVel through a convenient command-line interface or directly from Python. The code is object-oriented and thus naturally extensible. We encourage contributions from the community. Documentation is available at http://radvel.readthedocs.io.Comment: prepared for resubmission to PAS

    K-orbit closures on G/B as universal degeneracy loci for flagged vector bundles with symmetric or skew-symmetric bilinear form

    Full text link
    We use equivariant localization and divided difference operators to determine formulas for the torus-equivariant fundamental cohomology classes of KK-orbit closures on the flag variety G/BG/B, where G = GL(n,\C), and where KK is one of the symmetric subgroups O(n,\C) or Sp(n,\C). We realize these orbit closures as universal degeneracy loci for a vector bundle over a variety equipped with a single flag of subbundles and a nondegenerate symmetric or skew-symmetric bilinear form taking values in the trivial bundle. We describe how our equivariant formulas can be interpreted as giving formulas for the classes of such loci in terms of the Chern classes of the various bundles.Comment: Minor revisions and corrections suggested by referees. Final version, to appear in Transformation Group

    TESS Spots a Compact System of Super-Earths around the Naked-eye Star HR 858

    Get PDF
    Transiting Exoplanet Survey Satellite (TESS) observations have revealed a compact multiplanet system around the sixth-magnitude star HR 858 (TIC 178155732, TOI 396), located 32 pc away. Three planets, each about twice the size of Earth, transit this slightly evolved, late F-type star, which is also a member of a visual binary. Two of the planets may be in mean motion resonance. We analyze the TESS observations, using novel methods to model and remove instrumental systematic errors, and combine these data with follow-up observations taken from a suite of ground-based telescopes to characterize the planetary system. The HR 858 planets are enticing targets for precise radial velocity observations, secondary eclipse spectroscopy, and measurements of the Rossiter–McLaughlin effect

    Discovery and Follow-up Observations of the Young Type Ia Supernova 2016coj

    Get PDF
    The Type Ia supernova (SN Ia) 2016coj in NGC 4125 (redshift z = 0.00452 ± 0.00006) was discovered by the Lick Observatory Supernova Search 4.9 days after the fitted first-light time (FFLT; 11.1 days before B-band maximum). Our first detection (prediscovery) is merely 0.6 ± 0.5 days after the FFLT, making SN 2016coj one of the earliest known detections of an SN Ia. A spectrum was taken only 3.7 hr after discovery (5.0 days after the FFLT) and classified as a normal SN Ia. We performed high-quality photometry, low- and high-resolution spectroscopy, and spectropolarimetry, finding that SN 2016coj is a spectroscopically normal SN Ia, but the velocity of Si II λ6355 around peak brightness (~12,600 km s^(-1)) is a bit higher than that of typical normal SNe. The Si II λ6355 velocity evolution can be well fit by a broken-power-law function for up to a month after the FFLT. SN 2016coj has a normal peak luminosity (M_B ≈ -18.9 ± 0.2 mag), and it reaches a B-band maximum ~16.0 days after the FFLT. We estimate there to be low host-galaxy extinction based on the absence of Na I D absorption lines in our low- and high-resolution spectra. The spectropolarimetric data exhibit weak polarization in the continuum, but the Si II line polarization is quite strong (~0.9% ± 0.1%) at peak brightness

    KELT-17b: A Hot-Jupiter Transiting an A-Star in a Misaligned Orbit Detected with Doppler Tomography

    Get PDF
    We present the discovery of a hot Jupiter transiting the V = 9.23 mag main-sequence A-star KELT-17 (BD+14 1881). KELT-17b is a 1.31^(+0.28)_(-0.29) M_J, 1.525^(+0.065)_(-0.060) R_J hot-Jupiter in a 3.08-day period orbit misaligned at −115 9 ± 4 1 to the rotation axis of the star. The planet is confirmed via both the detection of the radial velocity orbit, and the Doppler tomographic detection of the shadow of the planet during two transits. The nature of the spin–orbit misaligned transit geometry allows us to place a constraint on the level of differential rotation in the host star; we find that KELT-17 is consistent with both rigid-body rotation and solar differential rotation rates (α < 0.30 at 2σ significance). KELT-17 is only the fourth A-star with a confirmed transiting planet, and with a mass of 1.635^(+0.066)_(-0.061) M⊙, an effective temperature of 7454 ± 49 K, and a projected rotational velocity of Îœ sin I* = 44.2^(+1.5)_(-1.3) km s^(-1) it is among the most massive, hottest, and most rapidly rotating of known planet hosts

    KELT-3b: A Hot Jupiter Transiting a V = 9.8 Late-F Star

    Get PDF
    We report the discovery of KELT-3b, a moderately inflated transiting hot Jupiter with a mass of 1.477^(+0.066)_(-0.067) M_J, radius of 1.345 ± 0.072 R J, and an orbital period of 2.7033904 ± 0.000010 days. The host star, KELT-3, is a V = 9.8 late F star with M* = 1.278^(+0.063)_(-0.061) M⊙, R* = 1.472^(+0.065)_(-0.067) R⊙, T_(eff) = 6306^(+50)_(-49) K, log(g) = 4.209^(+0.033)_(-0.031), and [Fe/H] = 0.044^(+0.080)_(-0.082), and has a likely proper motion companion. KELT-3b is the third transiting exoplanet discovered by the KELT survey, and is orbiting one of the 20 brightest known transiting planet host stars, making it a promising candidate for detailed characterization studies. Although we infer that KELT-3 is significantly evolved, a preliminary analysis of the stellar and orbital evolution of the system suggests that the planet has likely always received a level of incident flux above the empirically identified threshold for radius inflation suggested by Demory & Seager

    KELT-2Ab: A Hot Jupiter Transiting the Bright (V = 8.77) Primary Star of a Binary System

    Get PDF
    We report the discovery of KELT-2Ab, a hot Jupiter transiting the bright (V = 8.77) primary star of the HD 42176 binary system. The host is a slightly evolved late F-star likely in the very short-lived "blue-hook" stage of evolution, with T_(eff) = 6148 ± 48 K, log g = 4.030^(+0.015)_(–0.026) and [Fe/H] = 0.034 ± 0.78. The inferred stellar mass is M* = 1.314^(+0.063)_(–0.060) M☉ and the star has a relatively large radius of R* = 1.836^(+0.066)_(–0.046) R☉. The planet is a typical hot Jupiter with period 4.1137913 ± 0.00001 days and a mass of M_P = 1.524 ± 0.088 M J and radius of R_P = 1.290^(+0.064)_(–0.050) R_J. This is mildly inflated as compared to models of irradiated giant planets at the ~4 Gyr age of the system. KELT-2A is the third brightest star with a transiting planet identified by ground-based transit surveys, and the ninth brightest star overall with a transiting planet. KELT-2Ab's mass and radius are unique among the subset of planets with V < 9 host stars, and therefore increases the diversity of bright benchmark systems. We also measure the relative motion of KELT-2A and -2B over a baseline of 38 years, robustly demonstrating for the first time that the stars are bound. This allows us to infer that KELT-2B is an early K dwarf. We hypothesize that through the eccentric Kozai mechanism KELT-2B may have emplaced KELT-2Ab in its current orbit. This scenario is potentially testable with Rossiter-McLaughlin measurements, which should have an amplitude of ~44 m s^(–1)
    • 

    corecore